{"id":3741,"date":"2025-03-21T15:36:07","date_gmt":"2025-03-21T13:36:07","guid":{"rendered":"https:\/\/genaisa.eu\/?p=3741"},"modified":"2025-03-21T15:36:07","modified_gmt":"2025-03-21T13:36:07","slug":"industry-adoption-of-ai-the-deloitte-example","status":"publish","type":"post","link":"https:\/\/genaisa.eu\/lt\/pramoneje-priimtas-deloitte-pavyzdys\/","title":{"rendered":"AI pritaikymas pramon\u0117je: Deloitte pavyzdys"},"content":{"rendered":"
\u012evairi\u0173 pramon\u0117s \u0161ak\u0173 \u012fmon\u0117s spar\u010diai integruoja dirbtinio intelekto (AI) \u012frankius, siekdamos racionalizuoti veikl\u0105, padidinti efektyvum\u0105 ir skatinti naujoves. Puikus pavyzdys yra Deloitte, pasaulin\u0117 konsultacij\u0173 ir profesionali\u0173 paslaug\u0173 lyder\u0117, kuri aktyviai \u012ftraukia dirbtinio intelekto sprendimus \u012f savo darbo eig\u0105.<\/p>\n\n\n\n
Deloitte naudoja generatyv\u0173j\u012f AI, kad automatizuot\u0173 sud\u0117tingas u\u017eduotis, tokias kaip duomen\u0173 analiz\u0117, ataskait\u0173 generavimas ir nusp\u0117jamasis modeliavimas. Tai leid\u017eia konsultantams sutelkti d\u0117mes\u012f \u012f strategini\u0173 sprendim\u0173 pri\u0117mim\u0105, o ne \u012f daug laiko reikalaujan\u010dius rankinius procesus.<\/p>\n\n\n\n
AI \u012frankiai padeda \u201eDeloitte\u201c analizuoti did\u017eiulius duomen\u0173 kiekius, realiuoju laiku teikiant \u012f\u017evalgas, kurios pagerina klient\u0173 rekomendacijas ir rinkos prognozes. Naudodama ma\u0161ininio mokymosi algoritmus, Deloitte pagerina rizikos vertinim\u0105 ir suk\u010diavimo aptikim\u0105, tod\u0117l finansiniai ir atitikties sprendimai tampa tikslesni.<\/p>\n\n\n\n
Dirbtinio intelekto valdomi pokalbi\u0173 robotai ir virtual\u016bs asistentai naudojami \u012fprastoms u\u017eklausoms tvarkyti, susitikimams planuoti ir vidaus procesams supaprastinti. Tai \u017eymiai suma\u017eina veiklos neefektyvum\u0105 ir padidina darbuotoj\u0173 na\u0161um\u0105.<\/p>\n\n\n\n
Deloitte \u012ftraukia dirbtin\u012f intelekt\u0105 \u012f savo debesijos paslaugas ir kibernetinio saugumo sprendimus, si\u016blydama klientams automatizuot\u0105 gr\u0117smi\u0173 aptikim\u0105 ir DI patobulintas skaitmenin\u0117s transformacijos strategijas.<\/p>\n\n\n\n
Deloitte DI pritaikymas yra dalis didesn\u0117s pramon\u0117s tendencijos, kai \u012fmon\u0117s pereina nuo tradicini\u0173 proces\u0173 prie dirbtinio intelekto pagr\u012fst\u0173 skaitmenini\u0173 darbo eig\u0173. AI integravimas rodo per\u0117jim\u0105 prie:<\/p>\n\n\n\n
Deloitte iniciatyvus DI pritaikymas parodo, kaip did\u017eiosios \u012fmon\u0117s i\u0161 naujo apibr\u0117\u017eia produktyvum\u0105, inovacijas ir klient\u0173 aptarnavim\u0105. AI \u012frankiams toliau tobul\u0117jant, tikimasi, kad \u012fmon\u0117s visame pasaulyje vadovausis \u0161iuo modeliu, tod\u0117l dirbtinis intelektas taps neatsiejama ateities darbo ir skaitmenin\u0117s transformacijos dalimi.<\/p>","protected":false},"excerpt":{"rendered":"
\u012evairi\u0173 pramon\u0117s \u0161ak\u0173 \u012fmon\u0117s spar\u010diai integruoja dirbtinio intelekto (AI) \u012frankius, siekdamos racionalizuoti veikl\u0105, padidinti efektyvum\u0105 ir skatinti naujoves. Puikus pavyzdys yra Deloitte, pasaulin\u0117 konsultavimo ir profesionali\u0173 paslaug\u0173 lyder\u0117, kuri aktyviai \u012ftraukia dirbtinio intelekto sprendimus \u012f savo darbo eig\u0105. Kaip Deloitte naudoja dirbtin\u012f intelekt\u0105, kad padidint\u0173 produktyvum\u0105 Dirbtinio intelekto valdomos konsultacin\u0117s paslaugos Deloitte naudoja\u2026<\/p>","protected":false},"author":2,"featured_media":3742,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_acf_changed":false,"_kad_blocks_custom_css":"","_kad_blocks_head_custom_js":"","_kad_blocks_body_custom_js":"","_kad_blocks_footer_custom_js":"","_kad_post_transparent":"","_kad_post_title":"","_kad_post_layout":"","_kad_post_sidebar_id":"","_kad_post_content_style":"","_kad_post_vertical_padding":"","_kad_post_feature":"","_kad_post_feature_position":"","_kad_post_header":false,"_kad_post_footer":false,"footnotes":""},"categories":[12],"tags":[],"class_list":["post-3741","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-generative-ai-insights"],"acf":[],"taxonomy_info":{"category":[{"value":12,"label":"Generative AI Insights"}]},"featured_image_src_large":["https:\/\/genaisa.eu\/wp-content\/uploads\/2025\/03\/2025-03-21-15.33.51.webp",1024,1024,false],"author_info":{"display_name":"Nikolay Tsolev (RCCI)","author_link":"https:\/\/genaisa.eu\/lt\/author\/ntsolev\/"},"comment_info":0,"category_info":[{"term_id":12,"name":"Generative AI Insights","slug":"generative-ai-insights","term_group":0,"term_taxonomy_id":12,"taxonomy":"category","description":"Articles providing tips, trends, and knowledge on generative AI, its applications, and ethical considerations.","parent":0,"count":2,"filter":"raw","cat_ID":12,"category_count":2,"category_description":"Articles providing tips, trends, and knowledge on generative AI, its applications, and ethical considerations.","cat_name":"Generative AI Insights","category_nicename":"generative-ai-insights","category_parent":0}],"tag_info":false,"_links":{"self":[{"href":"https:\/\/genaisa.eu\/lt\/wp-json\/wp\/v2\/posts\/3741","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/genaisa.eu\/lt\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/genaisa.eu\/lt\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/genaisa.eu\/lt\/wp-json\/wp\/v2\/users\/2"}],"replies":[{"embeddable":true,"href":"https:\/\/genaisa.eu\/lt\/wp-json\/wp\/v2\/comments?post=3741"}],"version-history":[{"count":0,"href":"https:\/\/genaisa.eu\/lt\/wp-json\/wp\/v2\/posts\/3741\/revisions"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/genaisa.eu\/lt\/wp-json\/wp\/v2\/media\/3742"}],"wp:attachment":[{"href":"https:\/\/genaisa.eu\/lt\/wp-json\/wp\/v2\/media?parent=3741"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/genaisa.eu\/lt\/wp-json\/wp\/v2\/categories?post=3741"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/genaisa.eu\/lt\/wp-json\/wp\/v2\/tags?post=3741"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}